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Quantum-classical correspondence for the equilibrium distributions of two interacting spins
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~Received 16 March 2001; published 20 July 2001!

We consider the quantum and classical Liouville dynamics of a nonintegrable model of two coupled spins.
Initially localized quantum states spread exponentially to the system size when the classical dynamics are
chaotic. The long-time behavior of the quantum probability distributions and, in particular, the parameter-
dependent rates of relaxation to the equilibrium state are surprisingly well approximated by the classical
Liouville mechanics even for small quantum numbers. As the accessible classical phase space becomes pre-
dominantly chaotic, the classical and quantum probability equilibrium configurations approach the microca-
nonical distribution, although the quantum equilibrium distributions exhibit characteristic ‘‘minimum’’ fluctua-
tions away from the microcanonical state. The magnitudes of the quantum-classical differences arising from
the equilibrium quantum fluctuations are studied for both pure and mixed~dynamically entangled! quantum
states. In both cases the standard deviation of these fluctuations decreases as (\/J)1/2, whereJ is a measure of
the system size. In conclusion, under a variety of conditions the differences between quantum and classical
Liouville mechanics are shown to become vanishingly small in the classical limit (J/\→`) of a nondissipa-
tive model endowed with only a few degrees of freedom.
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I. INTRODUCTION

The study of chaos in quantum dynamics has led to
fering views on the conditions required for demonstrat
quantum-classical correspondence@1,2#. Moreover, the crite-
ria by which this correspondence should be measured h
also been a subject of some controversy@3–5#. While much
of the earlier work on this topic is concerned with charact
izing the degree of correspondence between quantum ex
tation values and classical dynamical variables@6–8#, the
more recent approach is to focus on differences between
properties of quantum states and associated classical p
space densities evolved according to Liouville’s equat
@1,9–13#.

Several authors have examined quantum-classical co
spondence by considering the effects of interactions wit
stochastic environment@14–16#, a process sometimes calle
decoherence. While this process may improve the degree
quantum-classical correspondence for fixed quantum n
bers, it has been further suggested that the limit of la
quantum numbers is inadequate for correspondence, and
decoherencemustbe taken into account to generate classi
appearances from quantum theory; this view has been ar
to apply even in the case of macroscopic bodies that
described initially by well-localized states, provided the
classical motion is chaotic@5,17,18#. In this paper we exam
ine how the degree of correspondence with Liouville dyna
ics scales specifically in the limit oflarge quantum numbers
This ‘‘classical limit’’ is distinct from a ‘‘thermodynamic
limit,’’ that is, a limit involving manyquantum numbers.

The degree of Liouville correspondence has been cha
terized previously by studying the differences between
means and variances of the dynamical variables@1,9,11–
13,19#. This involves a comparison of quantum expectat
values and classical ensemble averages. However, these
order moments give only crude information about the diff
ences between the quantum and classical states. Specifi
the quantum state may exhibit coarse structure that dif
1063-651X/2001/64~2!/026217~11!/$20.00 64 0262
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significantly from the classical state although the means
variances~for some simple observables! are nearly the same
for the quantum and classical states. Moreover, much of
previous work was concerned with correspondence at e
times, or more precisely, in the Ehrenfest regime when
states are narrow compared to system dimensions@12,13#.

Another approach is to identify quantum-classical diffe
ences with differences between the Wigner quasidistribu
and the classical phase space density@2#. This approach is
objectionable because the Wigner quasidistribution may t
on negative values and therefore may not be interpreted
‘‘classically observable’’ phase space distribution. It is po
sible to consider instead smoothed quantum phase space
tributions, but in this case the residual quantum-classical
ferences still do not have clear experimental significance

In this paper, we characterize the degree of quantu
classical correspondence by comparing quantum probab
distributions for dynamical variables with the correspondi
classical marginal distributions for these dynamical va
ables. These are well-defined classical observables tha
scribe the distribution of outcomes upon measurement of
given dynamical variable. We are interested in the diff
ences that arise on afinescale and therefore characterize t
typical quantum-classical deviations that arise in bins
width \.

The dynamics are generated by a model of interact
spins that we have studied previously in Ref.@13#. The Hil-
bert space is finite dimensional so no artificial truncation
the state is required. The quantum time evolution is unit
and the classical motion is volume preserving~symplectic!.
In the case of classically chaotic motion, we follow initial
localized states until they have evolved well beyond the
laxation time scale of the classical density. Throughout
paper we emphasize that thequantumsignatures of chaos
that appear in the quantum distributions are the same
those that appear in the marginal classical distributions
particular, the quantum relaxation rates can be accurately
timated from the Liouville dynamics of an approximate
©2001 The American Physical Society17-1
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matching initial phase space density. This purely class
approximation is surprisingly accurate even for small qu
tum numbers, but may be most useful for the theoret
description of mesoscopic systems since the purely clas
calculations do not scale with the quantum numbers.

The quantum and classical probability distributions
main close even after the states have spread to the sy
size. Specifically, in mixed regimes, the quantum distrib
tions exhibit an equilibrium shape that reflects the details
the classical Kolmogorov-Arnold-Moser~KAM ! surfaces.
When the classical manifold is predominantly chaotic,
quantum and classical states relax close to the microcan
cal state. However, in both of these chaotic regimes the e
librium quantum distributions exhibit characteristic fluctu
tions away from the classical ones. We demonstrate that
standard deviation of these quantum-classical differences
comes vanishingly small in the classical limit,J/\→`,
whereJ is a characteristic system action.

This paper is organized as follows. In Sec. II we descr
the quantum and classical models for our system. In Sec
we describe the initial quantum states and correspond
classical densities. In Sec. IV we give an overview of t
dynamics of the probability distributions in the different cla
sical regimes. In Sec. V we examine the quantum and c
sical relaxation rates using the Shannon entropy. In Sec
we give an overview of the time development of the sm
differences between the quantum and classical probab
distributions. In Sec. VII we show that the relative quantu
classical differences decrease as an inverse power of the
bert space dimension. In Sec. VIII we provide a brief su
mary and explain how our results inform current discussi
of the necessary and sufficient conditions for the emerge
of classical properties from quantum mechanics.

II. THE MODEL

We consider the quantum and classical dynamics ge
ated by a nonintegrable model of two interacting spins,

H5a~Sz1Lz!1cSxLx (
n52`

`

d~ t2n!, ~1!

where S5(Sx ,Sy ,Sx) and L5(Lx ,Ly ,Lz). The first two
terms correspond to simple rotation of both spins about thz
axis through an anglea with range 2p radians. The sum ove
coupling terms describes an infinite sequence ofd function
interactions at timest5n for integern. Each interaction term
produces an impulsive rotation of each spin about thex axis
by an angle proportional to thex component of the othe
spin.

A. The quantum dynamics

To obtain the quantum dynamics we interpret the Ca
sian components of the spins as operators satisfying the u
angular momentum commutation relations,

@Si ,Sj #5 i e i jkSk ,

@Li ,L j #5 i e i jkLk ,

@Ji ,Jj #5 i e i jkJk .
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In the above we have set\51 and introduced the tota
angular momentum vectorJ5S1L .

The Hamiltonian~1! possesses kinematic constants of t
motion @S2,H#50 and@L2,H#50. Thus the total state vec
tor uc& can be represented in an invariant Hilbert spaceH
5Hs^ Hl , with dimension N5(2s11)(2l 11), that is
spanned by the orthonormal vectors

us,l ,ms ,ml&5us,ms& ^ u l ,ml& ~2!

with msP$s,s21, . . . ,2s% andmlP$ l ,l 21, . . . ,2 l %.
It should be noted that the components of the total ang

momentum are not conserved@Ji ,H#Þ0. Thez component
is subject to the selection ruleDJz5$62,0% and conse-
quently the full Hilbert space can be decomposed into t
invariant subspaces.

The periodic sequence of interactions introduced by thd
function produces a quantum mapping. The time evolut
for a single iteration, from just before a kick to just befo
the next, is produced by the unitary transformation

uc~n11!&5Fuc~n!&, ~3!

whereF is the single-step Floquet operator,

F5exp@2 ia~Sz1Lz!#exp@2 icSx^ Lx#. ~4!

The quantum dynamics are thus specified by two parame
a andc, and two quantum numbers,s and l.

B. Classical map

For the Hamiltonian~1! the corresponding classical equ
tions of motion are obtained by interpreting the angular m
mentum components as dynamical variables satisfying,

$Si ,Sj%5e i jkSk ,

$Li ,L j%5e i jkLk ,

$Ji ,Jj%5e i jkJk ,

with $•,•% denoting the Poisson bracket. The periodicd
function in the coupling term can be used to reduce the t
evolution to a stroboscopic mapping at timest5n, for inte-
ger n,

S̃x
n115S̃x

n cos~a!2@S̃y
n cos~grL̃ x

n!2S̃z
n sin~grL̃ x

n!#sin~a!,

S̃y
n115@S̃y

n cos~grL̃ x
n!2S̃z

n sin~grL̃ x
n!#cos~a!1S̃x

n sin~a!,

S̃z
n115S̃z

n cos~grL̃ x
n!1S̃y

n sin~grL̃ x
n!,

~5!
L̃x

n115L̃x
n cos~a!2@ L̃y

n cos~gS̃x
n!2L̃z

n sin~gS̃x
n!#sin~a!,

L̃y
n115@ L̃y

n cos~gS̃x
n!2L̃z

n sin~gS̃x
n!#cos~a!1L̃x

n sin~a!,

L̃z
n115L̃z

n cos~gS̃x
n!1L̃y

n sin~gS̃x
n!.
7-2
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Here L̃5L /uL u, S̃5S/uSu, and we have introduced the pa
rametersg5cuSu andr 5uL u/uSu. The mapping equations~5!
describe the time evolution of Eq.~1! from just before one
kick to just before the next.

Since the magnitudes of both spins are conserv
$S2,H%5$L2,H%50, the stroboscopic motion is actual
confined to the four-dimensional manifoldP5S23S2,
which corresponds to the surfaces of two spheres. Thi
manifest when the mapping~5! is expressed in terms of th
four canonical coordinatesx5(Sz ,fs ,Lz ,f l), where fs
5tan21(Sy /Sx) and f l5tan21(Ly /Lx). We will refer to the
mapping~5! in canonical form using the shorthand notati
xn115F(xn). It is also useful to introduce a complete set
spherical coordinates uW 5(us ,fs ,u l ,f l) where us
5cos21(Sz/uSu) andu l5cos21(Lz/uL u).

As in the quantum model, the components of total angu
momentum are not constants of the motion$Ji ,H%Þ0. On
the other hand, the quantum selection ruleDJz5$62,0% has
no classical analog.

The mapping~5! on the reduced surfaceP enjoys a rather
large parameter space. The dynamics are determined
three independent dimensionless parameters~a, g, andr>1!,
where g5cuSu is a dimensionless coupling strength a
r 5uL u/uSu corresponds to the ratio of the magnitudes of
two spins. The dependence of the classical behavior on t
parameters is described in Ref.@13#.

C. The Liouville dynamics

We are interested in comparing the quantum dynam
generated by Eq.~3! with the corresponding Liouville dy-
namics of a classical distribution. The time evolution of
Liouville density is generated by the partial differential equ
tion,

]rc~x,t !

]t
52$rc ,H%, ~6!

where H stands for the Hamiltonian ~1! and
x5(Sz ,fs ,Lz ,f l).

The solution to Eq.~6! can be expressed in the compa
form,

rc~x,t !5E
P
dm~y!d„x2x~ t,y!…rc~y,0!, ~7!

with measure,

dm~y!5dS̃zdfsdL̃zdf l , ~8!

and where the time-dependent functionsx(t,y)PP are solu-
tions to the equations of motion~5! with initial conditions
yPP. This solution expresses the fact that Liouville’s equ
tion ~6! describes the dynamics of a classical density
points evolving in phase space under the Hamiltonian fl
We exploit this fact to numerically solve Eq.~6! by randomly
generating initial conditions consistent with an initial pha
space distributionrc(x,0) and then time evolving each o
these initial conditions using the equations of motion~5!.
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D. Correspondence between quantum and classical models

For a quantum system specified by the four numb
$a,c,s,l% we determine the corresponding classical parame
$a,g,r % by first defining the classical magnitudes in terms
the quantum magnitudes,

uSu5As~s11!,

uL u5Al ~ l 11!, ~9!

where the quantities on the left hand side are the length
the classical spins and those on the right are the quan
numbers. If we set the Hamiltonian coefficientsa andc nu-
merically equal for both models, then the remaining two
mensionless classical parameters are determined,

r 5S l ~ l 11!

s~s11! D
1/2

,

g5cAs~s11!. ~10!

We are interested in extrapolating the behavior of
quantum dynamics in the limits→` and l→`. This is ac-
complished by studying sequences of quantum models w
increasings andl chosen so thatt andg are held fixed. Since
s and l are restricted to integer~or half-integer! values, the
corresponding classicalr will actually vary slightly for each
member of this sequence~althoughg can be matched exactl
by varying the quantum parameterc slightly!. In the limit
s→` and l→` this variation becomes increasingly sma
sincer 5Al ( l 11)/s(s11)→ l /s. We have examined the ef
fect of the small variations in the value ofr on the classical
behavior and found this variation to have negligible effec

III. INITIAL STATES

We considerinitial quantum states that are pure and se
rable,

uc~0!&5ucs~0!& ^ uc l~0!&. ~11!

The initial state of each subsystem is a directed angular
mentum state,

uu,f&5R~ j !~u,f!u j , j &, ~12!

wherej in this section refers to eitherl or s. This is a local-
ized state, i.e., one of maximum polarization in the direct
~u, f!, with expectation values of the spin components co
fined to the surface of a two sphere,

^u,fuJzuu,f&5 j cosu,

^u,fuJx6 iJyuu,f&5 je6 if sinu. ~13!

The states~12! are the SU~2! coherent states, which, like
their counterparts in the Euclidean phase space, are m
mum uncertainty states@20#; the normalized variance of th
quadratic operator
7-3
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D J̃25
^u,fuJ2uu,f&2^u,fuJuu,f&2

j ~ j 11!
5

1

~ j 11!
, ~14!

is minimized for givenj and vanishes in the limitj→`. The
coherent states directed along thez axis, uj, j& and u j ,2 j &,
saturate the inequality of the Heisenberg uncertainty rela

^Jx
2&^Jy

2&>
^Jz&

2

4
, ~15!

although this inequality is not saturated for coherent sta
polarized in other directions.

We would like to construct a classical Liouville density o
the two sphere with marginal distributions that match
quantum probability distributions. But we have shown pre
ously that this is impossible for the SU~2! coherent states
@13#. Thus from the outset it is clear that any choice of init
classical state will exhibit residual discrepancy in match
some of the initial quantum moments.

We have examined the correspondence properties of
eral different classical distributions. These included the v
tor model distribution described in the Appendix of@13# and
the Gaussian distribution used by Fox and Elston in co
spondence studies of the kicked top@10#. We selected the
density

rc~u,f!sinu du df5C expF2

2 sin2S u

2D
s2

G sinu du df

~16!

with C5@2ps2$12exp(22s22)%#21, instead of those previ
ously considered because it is periodic under 2p rotation.
The classical density~16! has a maximum along the1z axis,
corresponding to the coherent stateuj, j&. An initial state di-
rected along (uo ,fo) is produced by a rigid body rotation o
Eq. ~16! by an angleuo about they axis followed by rotation
through an anglefo about thez axis. The variances2 is a
free parameter of the distribution. Althoughs2 cannot be
chosen so that all low order moments are satisfied, the ch
s2252uJu, where uJu25 j ( j 11), produces a reasonab
compromise, as discussed in@13#.

IV. DYNAMICAL BEHAVIOR OF PROBABILITY
DISTRIBUTIONS

In the case of a mixing classical system, initial densit
with nonzero support are expected to spread in an incr
ingly uniform manner throughout the accessible phase sp
The termuniform is meant to apply specifically in a coars
grained sense. For some simple maps, such as the ba
map, it is possible to show that this rate of relaxation to
equilibrium configuration occurs exponentially with tim
@21#.

The spin map we consider, Eq.~5!, is not mixing on the
accessible classical manifoldP, but hasmixed dynamics:
depending on the system parameters, the surfaceP can gen-
erally be decomposed into regions of regular dynamics an
connected region of chaotic dynamics@13#. In parameter re-
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gimes that are predominantly chaotic, we expect behavio
P that approximates that of a mixing system. In particul
initially localized Liouville densities should relax close to
wards the microcanonical measure at an exponential rate
average. In this section we demonstrate that these signa
of chaos are exhibited also by the quantum dynamics. M
striking is the degree of similarity between the quantum a
classical behaviors even in regimes with classically mix
dynamics.

We are interested in the behavior of quantum probabi
distributions that are associated with measurements of c
sical dynamical variables. The quantum probability distrib
tion associated with the classical observableLz is given by

PLz
~ml !5^c~n!uRl ,ml

uc~n!&5Tr@ u l ,ml&^ l ,ml ur~ l !~n!#,
~17!

where,

Rl ,ml
51s^ u l ,ml&^ l ,ml u ~18!

is a projection operator onto the eigenstates ofLz , and

r~ l !~n!5Tr~s!@ uc~n!&^c~n!u# ~19!

is the reduced state operator for the spinL at time n, and
Tr(s) denotes a trace over the factor spaceHs . We have
written out the explicit expression~17! to emphasize that the
probability of obtaining eachml value is associated with a
projector onto a subspace of thefactor spaceHl .

For reasons related to this fact~which we will make clear
in later sections!, we are also interested in examining th
probability distributions associated with components of
total angular momentumJ5S1L . The probability of ob-
taining a givenmj value upon measurement ofJz is given by

PJz
~mj !5(

ms

u^c~n!us,l ,ms ,mj2ms&u2, ~20!

where us,l ,ms ,mj2ms& is an element of the orthonorma
basis~2!. The probabilityPj z

(mj ) is associated with a pro
jector onto a subspace of thefull Hilbert spaceH. The di-
mension of each subspace is given by the number of p
(ms ,ml) that yield a given value ofmj5ms1ml .

The classical probability distributions associated with d
namical variables are obtained by partial integration over
accessible phase space. In the case ofLz , the continuous
marginal distribution is given by

P~Lz!5E E E dSzdfsdf lrc~Sz ,fs ,Lz ,f l !, ~21!

where for notational convenience we have suppressed re
ence to the time dependence. The marginal probability
tribution for the total spin componentJz is obtained by inte-
gration subject to the constraintSz1Lz5Jz ,
7-4
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P~Jz!5E E E E dSzdfsdLzdf lrc~Sz ,fs ,Lz ,f l !

3d~Sz1Lz2Jz!. ~22!

These classical distributions are continuous, though t
quantum counterparts are intrinsically discrete. To const
a meaningful quantum-classical comparison it is useful
discretize the classical distributions by integrating the c
tinuous probabilities over intervals of width\51 centered
on the quantum eigenvalues. In the case of the compo
Lz , the quantum probabilityPLz

(ml) is then associated with

the classical probability of findingLz in the interval
@ml21/2,ml11/2#. This is given by

PLz

c ~ml !5E
ml21/2

ml11/2

P~Lz!. ~23!

Similarly, in the case ofJz , we compare each quantum
Pj z

(mj ) with the discrete classicalprobability

PJz

c ~mj !5E
mj 21/2

mj 11/2

P~Jz!. ~24!

In the following discussion of the numerical results w
will emphasize that, for chaotic states, the steady-state s
of the quantum and classical distributions should be co
pared with the corresponding set derived from the micro
nonical state. Our model is nonautonomous, but the s
magnitudes are conserved. The appropriateclassicalmicro-
canonical measure is a constant on the accessible man
P5S23S2. This follows from the usual equilibrium hypoth
esis that all accessible microstates are equiprobable, w
equiprobability is defined with respect to the invariant me
sure~8!. This microcanonical density projected onto theLz
axis produces the discrete, flat distribution,

PLz

mc~ml !5~2l 11!21. ~25!

However, projected alongJz , the microcanonical distribu
tion is not flat, but has a tent shape,

PJz

mc~mj !5
l 1s112umj u

~2s11!~2l 11!
for umj u> l 2s,

5
1

2l 11
for umj u< l 2s. ~26!

In quantum mechanics, the equiprobability hypothesis
plies that the appropriate microcanonical state is an eq
weight mixture. This microcanonical state, sometimes ca
a random state, is proportional to the identity in the f
Hilbert spaceH5Hs^ Hl . It produces the same projecte
microcanonical distributions, i.e., Eq.~25! for Lz and Eq.
~26! for Jz , as the classical microcanonical state.
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A. Mixed regime chaos

We consider first a classical parameter regime~g
51.215,r 51.1, anda55! for which the kinematically ac-
cessible phase spaceP is highly mixed. The chaotic region
appears to be connected~all chaotic initial conditions have
the same largest Lyapunov exponentlL50.04! and covers
about half of the kinematic surface. A projection of only th
chaotic initial conditions onto the plane spanned bySz and
Lz reveals large regular islands surrounding the stable pa
lel fixed points (6Sz ,6Lz), with chaotic regions spreadin
out from the unstable antiparallel fixed points (6Sz ,7Lz).
A similar projection of the regular initial conditions show
points not only clustered about the parallel fixed points
also spread along the lineS̃z5L̃z .

We now consider the time evolution of quantum and cl
sical states concentrated in the chaotic zone near one o
unstable antiparallel fixed points, with initial centroids d
rected alonguW (0)5(20°,40°,160°,130°). The quantum dy
namics are calculated using quantum numberss5140 and
l 5154. As shown in Fig. 1, at early times both the quantu
distributionPLz

(ml) ~solid line! and the corresponding clas

sical distributionPLz

c (ml) ~dots! remain well localized. Their

initial differences are not distinguishable on the scale of
figures. ~The dots are shifted to the right by half of the
width.! By time stepn520 both quantum and classical di
tributions have broadened to the system size and begi
exhibit noticeable differences. As shown in Fig. 2, arou
n5100 the distributions have begun to settle close to
equilibrium shape. In Fig. 3 the successive time stepsn

FIG. 1. Quantum and classical probability distributions forLz

with l 5154 in chaotic zone of mixed regime~g51.215, r 51.1,
a55!. The dots are visible because they are shifted to the righ
half of their width. The figure on the left is the initial stat
(n50) and that on the right is at time stepn56.

FIG. 2. Same as Fig. 1 but for time stepsn599 on the left and
n5100 on the right. Both quantum and classical distributions h
reached the system dimension and are relaxing towards equilibr
7-5
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5199 andn5200 show that, although both the quantum a
classical distributions have relaxed very close to the sa
equilibrium distribution, the quantum distribution exhibi
rapidly oscillating fluctuations about the classical stea
state.

Both the quantum and classical equilibrium distributio
~projected alongLz! show significant deviation from the mi
crocanonical distribution~25!. This is also true of the distri-
bution projected alongLx , which has a different nonuniform
equilibrium distribution than that observed when projecti
ontoLz ~see the left box of Fig. 4!. Uniform marginal distri-
butions would be expected if the classical mapping was m
ing, in which case arbitrary initial densities~with nonvanish-
ing measure! would relax to the microcanonical distribution
Since the accessible kinematic surface has large KAM
faces in this parameter regime, the coarse-grainedclassical
equilibrium distributions are not expected to be flat. An u
expected feature of the results is the observation that
shape of the equilibriumquantumdistributions so accurately
reflects the details of the KAM structure in the classic
phase space. This feature is most striking in the case of
distributions projected alongJz ~see the right box in Fig. 4!.
The steady-state quantum and classical probability distr
tions PJz

(mj ) and PJz

c (mj ) are both sharply peaked abo

mj50. This equilibrium shape is much more sharply peak
than the tent shape of the projectedmicrocanonicaldistribu-
tion, PJz

mc(mj ), given by Eq.~26! and also plotted in the righ

box in Fig. 4. The important point is that the additional l
calization of thequantum distribution can be understoo
from a standard fixed-point analysis of theclassical map

FIG. 3. Same as Fig. 1 but forn5199 on the left andn5200 on
the right. The quantum distribution is fluctuating about a class
steady state.

FIG. 4. Same as in the previous figure, but forPLx
(ml) on the

left and PJz
(mj ) on the right, at time stepn5200. BothPJz

(mj )
and PJz

c (mj ) are localized relative to the projected microcanoni

distributionPJz

mc(mj ).
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@13#: the presence of KAM surfaces arising due to the sta
ity of the parallel fixed points prevents the chaotic classi
spins from aligning in parallel along thez axis. Most remark-
ably, we find that the steady-state quantum distributions
curately reproduce this parameter-dependent structure o
mixed classical phase space even for much smaller quan
numbers. We examine how the accuracy of this corresp
dence scales with the quantum numbers in Sec. VII.

B. Regime of global chaos

If we hold a55 and r 51.1 fixed and increase the cou
pling strength to the valueg52.835, then all four of the
fixed points mentioned already become unstable@13#. Under
these conditions less than 0.1% of the surfaceP is covered
with regular islands; the remainder of the surface produce
connected chaotic zone with largest Lyapunov exponentlL
50.45. We will sometimes refer to this parameter regime
one ofglobal chaossince the kinematically accessible pha
space is predominantly chaotic.

The dynamics of the classical and quantum distributio
are much simpler in this regime. We find that initially loca
ized distributions, launched from arbitrary initial condition
relax to the microcanonical distribution on a very short tim
scale. To demonstrate this, we consider the dynamics o
initial quantum state withs5140 andl 5154, and a corre-

sponding classical density, launched fromuW (0)
5(20°,40°,160°,130°). Though the initial distributions a
the same as in the mixed regime, by time stepn.6 the
quantum and classical distributions have already sprea
the system size and begin to exhibit noticeable differenc
By time stepn.12 both distributions have relaxed ver
close to the microcanonical distributions. We plot the eq
librium quantum and classical projected distributio
PLz

(mj ) and PJz
(mj ) in Fig. 5 for time stepn550. The

projectedclassical distributions are early indistinguishabl
from the microcanonical forms,PLz

mc(mj ) and PLx

mc(mj ), and

the quantumdistributions again exhibit small fluctuation
about the classical distributions. We have found that th
equilibrium quantum-classical differences asymptote to
nonvanishing minimum when the measure of KAM surfac
becomes negligible. These minimum quantum fluctuatio

l

l

FIG. 5. The equilibrium shapes ofPLz
(ml) andPJz

(mj ) at time
step n550 with l 5154 for a state launched in the global cha
regime~g52.835,r 51.1,a55!. The quantum distributions exhibi
small rapidly oscillating fluctuations about the projected micro
nonical distributions. The classical distributions are not visible sin
the points lie within the fluctuating quantum data.
7-6
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reflect characteristic deviations from the microcanonical s
that arise because the equilibrium quantum state is p
whereas the microcanonical state corresponds to a ran
mixture.

V. RATES OF RELAXATION TO EQUILIBRIUM

In order to characterize the time scale of relaxation
equilibrium it is convenient to study the time dependence
a scalar measure that is sensitive to deviations from the e
librium state. A conventional indicator of this rate of a
proach to equilibrium is the coarse-grained entropy,

H52(
i

Pi ln Pi . ~27!

Here the$Pi% stand for the quantum probabilities associa
with projectors onto some basis of microstates~e.g., the pro-
jected distributions discussed in the previous section!. The
sum~27! is a standard measure of the information contain
in a probability distribution and is sometimes called t
Shannon entropy.

The Shannon entropy has a number of useful proper
First, unlike the von Neumann entropy2Tr@r ln r#, the Sh-
annon entropy is basis dependent. It reduces to the von N
mann entropy if the ‘‘chosen’’ basis diagonalizes the st
operator. However, this basis, or, more precisely, the se
projectors onto the~time-dependent! spectral decomposition
of the state operator, does not necessarily correspond to
of classically meaningful observables. Our main interest i
examine correspondence at the level of classical dynam
variables, so we consider probability distributions associa
with projectors onto the eigenstates of classically we
defined operators. The classical counterparts to these p
ability distributions are associated with some fixed partio
ing of the phase space into cells of width\ along the axes of
the associated dynamical variable.

Second, whereas the von Neuman entropy of the t
system is constant in time (Tr@r ln r#50 sincer5uc&^cu),
the basis-dependent Shannon entropy may have time de
dence even if the quantum state is pure. Thus Eq.~27! may
be applied to examine the rate of relaxation of eitherpureor
mixedquantum states. It is in this sense that we use the t
relaxation, although the time evolution is unitary in th
quantum model~and volume preserving in the classic
model!.

Given some fixed partioning of the phase space, if a c
sical state remains evenly spread through the phase s
cells it occupies, and spreads through the phase space e
nentially with time, then an entropy like Eq.~27! should
grow linearly with time. In this section we show that th
argument holds approximately also for quantum sta
launched from a classically chaotic region of phase spa
The actual rate of relaxation of the quantum states is ac
rately predicted by the classical entropy even for small qu
tum numbers.

We demonstrate this behavior by first considering
quantum entropyHq@Jz# of the probabilities associated wit
the eigenvaluesmj of Jz , i.e., the probabilities defined in Eq
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~20!. The corresponding classical entropyHc@Jz# is calcu-
lated using the discrete classical probabilities~24!. In Fig. 6
we compare the time development of the quantum and c
sical entropies using quantum numberss5140 andl 5154.
For these quantum numbers, the microcanonical~i.e., maxi-
mum! value of the entropy isHmc@Jz#56.2. In case~c!, cor-

responding to a regular zone of the mixed regime@uW (0)
5(5°,5°,5°,5°), g51.215#, we actually see the greate
amount of difference between the quantum (Hq@Jz#) and
classical (Hc@Jz#) entropies.Hq exhibits a quasiperiodic
oscillation about its initial value whereas forHc these oscil-
lations eventually dampen. For smaller quantum numb
and thus broader initial states,Hc dampens much more rap
idly althoughHq continues to exhibit a pronounced quasi

eriodic behavior. In case~b!, with initial centroid uW (0)
5(20°,40°,160°,130°) set in a chaotic region of the equa
mixed regime, bothHq and Hc oscillate about an initially
increasing average before relaxing towards a constant v
that lies well below the microcanonical maximumHmc@Jz#
56.2. This saturation away from the maximum is expec
in the classical model since a large fraction of the kinema
surface is covered with regular islands and remains inac
sible. In case~a!, corresponding to the regime of globa
chaos (g52.835) and with the same initial state as~b!, the
entropies are nearly identical. Both grow much more quic
than in the mixed regime case, roughly linearly, until sa
rating very near the maximum value.

The quantum entropy is very well approximated by
classical counterpart also for smaller quantum numbers
Fig. 7 we display the growth rates of the quantum and cl
sical entropies of the probability distributions associated w
the observableLz for three sizes of quantum system~l 511,
l 522, l 5220! using the same parameters and initial con
tion as for data set~a! in Fig. 6. In each case the quantu
entropy is essentially identical to the corresponding class
entropy. The initial rate of growth is similar in each cas
roughly linear, and of order the Lyapunov exponent,lL
50.45.

These results extend previous work demonstrating that

FIG. 6. Comparison of the quantum and classical entrop
H@Jz#52Smj

PJz
(mj )ln PJz

(mj) for s5140 andl 5154 in ~a! re-
gime of global chaos (g52.835); ~b! chaotic zone of the mixed
regime (g51.215); ~c! regular zone of the mixed regim
(g51.215).
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J. EMERSON AND L. E. BALLENTINE PHYSICAL REVIEW E64 026217
widths of quantum states grow exponentially with time,
average, until saturation at the system size@10,12,13#.
Modulo the small quantum fluctuations, for both quantu
and classical models we find that the subsequent relaxa
to an equilibrium configuration occurs on the time scale

t rel;tsat1O~lL
21!, ~28!

wheretsat.lw
21 ln l estimates the time it takes the initial co

herent state to reach the system dimension. The exponenlw
is the exponent governing the growth rate of the state w
@13#. The last termO(lL

21) approximates the additional tim
required for the state to become more or less uniform
spread over the accessible phase space. In predomin
chaotic regimes we have found thatlw.lL , though in
mixed regimeslw is generally a few times larger than th
largest Lyapunov exponent.

VI. TIME DEPENDENCE OF QUANTUM-CLASSICAL
DIFFERENCES

Before examining the scaling of quantum-classical diff
ences with increasing quantum numbers, it is useful to de
mine first their time-domain characteristics under the diff
ent types of classical behavior. Previous work has shown
quantum-classical differences for low-order momen
though initially small, grow exponentially with time whe
the classical motion is chaotic@12,19# until the states ap-
proach the system size@13#. On this saturation time scal
those quantum-classical differences reach their maxim
magnitude, but surprisingly this maximum was small,O(\).
More specifically, it did not scale with the quantum numbe
Of course, two distributions can be altogether different ev
when the differences between their means and variance
quite small, and therefore it is useful to examine the diff
ences between the quantum and classical states in a
sensitive way.

In this section we examine the time dependence of b
wise deviations between the quantum and classical prob
ity distributions. For the observableLz this indicator takes
the form

FIG. 7. Comparison of the quantum and classical subsys
entropies H@Lz#52Smj

PLz
(ml)ln PLz

(ml) for increasing system
sizes in the global chaos regime of Fig. 6.
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s@Lz#5S 1

~2l 11! (
ml52 l

l

@PLz
~ml !2PLz

c ~ml !#
2D 1/2

.

~29!

This standard deviation estimates typical quantum-class
differences on the scale of\ along theLz axis. Each interval
is centered on a quantum eigenvalue. ThePLz

c (ml) corre-

spond to a measurement, or coarse graining, of the clas
density on an extremely fine scale.

In Fig. 8 we examine the time dependence ofs@Lz# for
the same three classical sets of parameters and initial co
tions displayed in Fig. 6. The initial value ofs@Lz# is gen-
erally not zero since it is not possible to match all the m
ginal distributions exactly in the case of the SU~2! coherent
states@13#. The actual magnitude of the initial discrepan
depends on the angle between the axis of measurement,
Lz , and the direction of polarization of the initial state. F
both chaotic states the differences initially decrease fr
their angle-dependent value and then increase until satura
at a steady-state value. This steady-state value is rea
much later in the mixed regime~upper solid line!, than in the
global chaos regime~lower solid line!. It occurs on the time
scalet rel on which the underlying distributions have reach
their steady-state configurations~modulo the quantum fluc-
tuations!.

As shown in Fig. 8, the quantum-classical differences
actually largest for the regular state~dotted line! of the mixed
regime (g51.215) at both early and late times~relative to
the relaxation time scale!. The steady-state magnitude of th
differences for the global chaos regime (g52.835) is signifi-
cantly smaller than the typical magnitude for the mixed
gime. However, for larger values of the classical perturbat
strengthg, this average steady-state magnitude does not
crease further~with the quantum numbers held fixed! but has
reached a nonvanishing minimum. The magnitude of

m FIG. 8. Time dependence of the standard deviations@Lz# of
quantum-classical differences~29! for states launched from a regu
lar zone~dotted line! of the mixed regime (g51.215), from a cha-
otic zone of the same mixed regime~middle solid line!, and from
the regime of global chaos~lower solid line,g52.835!. The initial
discrepancy is relatively large, but quickly decreases, and then
creases until reaching an asymptotic equilibrium value. This occ
more slowly for the mixed regime case, for which the asympto
value is also larger. In all casess5140 andl 5154.
7-8
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minimum steady-state fluctuations,DLz
.231024, should

be compared with a typical magnitude of the quantum a
classical distributions,PLz

(ml).331023. In the following
section we examine how these fluctuations scale with
creasing quantum numbers.

Above we have considered quantum-classical differen
for observables~projectors onto subspaces! associated with
the factor spaceHl . In this factor space the state is initiall
pure but becomes mixed as a result of dynamical interact
with the other subsystem. It is interesting to check if t
dynamical behaviors of the differences are an artifact
this dynamical mixing. Therefore we consider also b
wise quantum-classical differences for an observa
(Jz5Sz1Lz) that acts nontrivially on the full Hilbert spac
H5Hs^ Hl . The quantum state in the full Hilbert spac
remains pure throughout the time evolution. We construct
same standard deviation of the bin-wise differences betw
the quantum and classical probability distributions as abo

s@Jz#5S 1

@2~s1 l !11# (mj

@PJz
~mj !2PJz

c ~mj !#
2D 1/2

,

~30!

wheremjP$ l 1s,l 1s21, . . . ,2( l 1s)%. In Fig. 9 we com-
pares@Jz# in the same three classical regimes examined
Fig. 8. Once again the regular state~dotted line! exhibits the
largest quantum-classical differences, and the differences
both chaotic states~middle and lower solid line! grow to a
steady-state value on the time scale at which the underl
distributions relax to their equilibrium configurations. A
above, the average value of the differences forg52.835
~lower solid line! correspond to a nonvanishing minimum
that is, the average value does not noticeably decrease
larger values ofg. The minimum quantum fluctuations ar
again small when compared with the average height of
probability distribution,@2(s1 l )11#21.231023.

For g.2.835, the measure of regular islands is alrea
very close to zero and the classical system is nearly erg
on P. Similarly, the quantum state is no longer constrain
by any invariant classical structures but spreadsalmost
evenly about the accessible Hilbert space. We find that

FIG. 9. Same as Fig. 8 but for the standard deviation
quantum-classical differences of the total angular momentums@Jz#
given by Eq.~30!.
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standard deviations of the quantum fluctuations that acco
for the equilibrium quantum-classical differences approac
nonvanishing minimum as the classical dynamics appro
ergodicity onP. These equilibrium differences cannot vani
~for fixed quantum numbers! because the total quantum sta
remains pure under the unitary dynamics, whereas the mi
canonical equilibrium corresponds to an equal-weight m
ture.

VII. CORRESPONDENCE IN THE CLASSICAL LIMIT

We now turn to an examination of the classical lim
J/\→`, whereJ is characteristic system action. Since t
quantum-classical differences grow to their largest val
once the states have spread to the system size and s
quently fluctuate about this magnitude, we will examine t
scaling of the differences in this late time domain, that
when the states have relaxed close to their equilibrium c
figurations. Moreover, these scaling results will then comp
ment previous work that has focused on correspondenc
early times@13#, in the Ehrenfest regime when the states a
narrow relative to the system dimensions.

We wish to determine if the standard deviation of t
quantum-classical differences~defined in the previous sec
tion! decreases in magnitude with increasing quantum nu
bers. When comparing models with increasing quant
numbers, we hold the width of each probability bin fixed~at
\51!. Since the number of bins will increase with the qua
tum number, it follows that the height of the probability di
tribution in a given bin will also decrease. Consequently,
construct a scale-independent, or relative, measure of
binwise quantum fluctuations by taking the ratio of the sta
dard deviation to the average value of the probability dis
bution. For the observableLz this takes the form,

R@Lz~n!#5
D@Lz~n!#

P̄Lz

5Nls@Lz~n!#, ~31!

where the average valueP̄Lz
51/(2l 11)51/Nl . If this rela-

tive measure approaches zero in the classical limit then
quantum probability distribution converges to the cor
sponding classical one in that limit.

In Fig. 10 we consider typical equilibrium values o
R@Lz(n)# plotted against 1/ANl . We study the scaling using
Nl because it is equal to the dimension of the factor spaceHl
and it is also proportional to the subsystem sizeNl.2uL u.
We first consider a state launched in the global chaos reg

~g52.835, r 51.1!, with initial condition uW (0)
5(45°,70°,135°,70°). The scatter of plus signs for eachNl
52l 11 value corresponds to time stepsn such that 41<n
<50. These time-step values are chosen because they o
well after the relaxation timet rel.6. In this regime the data
exhibits very little scatter. A least-squares fit to the curveR
5A/ANl1B yields a value for the interceptB that is consis-
tent with zero (B50.00160.001) and a slope of order unit
(A51.03260.02). An intercept consistent with zero implie
that quantum-classical differences vanish in the class

f
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limit, i.e., PLz
(ml)→PLz

c (ml) as l→`. This result is espe-

cially remarkable since we have considered the differen
that arise given classical measurements that resolve the
servableLz with the rather extraordinary precision of\51.

We next consider a state launched from the chaotic z
of the mixed regime ~g51.215, r 51.1! with u(0)
5(20°,40°,160°,130°). The scatter of crosses in Fig. 10 c
responds to time steps 191<n<200, again chosen well afte
the relaxation timet rel for the range of quantum numbe
considered. The scatter of quantum-classical difference
eachNl value is much more significant in this regime
which the equilibrium distributions reflect a much mo
complex phase space structure. However, the relative di
ences exhibit, on average, a similar dependence on the q
tum numbers as in the predominantly chaotic regime. In
regime a least-squares fit to the curveR5A/Nl

1/21B yields a
slope of order unity (A53.3960.15) but a negative value
for the intercept (B520.01760.009) within two standard
deviations of zero. A negative intercept is not physica
meaningful~sinceR is a positive definite quantity! and we
assume it arises as a consequence of the statistical scat
the data. Also plotted is the curveR5C/Nl

1/2, with slope
C53.0960.04 also determined from a least-squares fit. B
fits are good, with reducedx2 values of order unity.

As we noted in the last section, the subsystem states
not remain pure, because of dynamically induced entan
ment between the subsystems. Since the subsystem stat~19!
in the factor spaceHl is not pure, but highly mixed in the
equilibrium time domain, it is possible that the scaling w
Nl that we observe is related to the purity loss from t
entanglement. Consequently, it is useful to examine the s
ing of the quantum-classical differences for the total spinJz .
The operatorJz acts nontrivially in the full Hilbert spaceH.
In this Hilbert space the system is described by a pure s
vector at all times. In Fig. 11 we consider the scaling of
ratio

FIG. 10. Scaling of relative quantum-classical differences~31!
in the equilibrium time domain versus increasing system size. S
ter of crosses corresponds to time steps 191<n<200, for a state
launched in the chaotic zone of the mixed regime (g51.215). Scat-
ter of plus signs corresponds to time steps 41<n<50, for a state
launched in the global chaos regime. Data sets in both of th
regimes are consistent with the scaling lawR.Nl

21/2, where
Nl52l 11.
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R@Jz~n!#5
D@Jz~n!#

P̄Jz

5Njs@Jz~n!#, ~32!

where P̄Jz
5@2(s1 l )11#215Nj

21 is the average value o

either distribution, versus the dimensionNj . HereNj is the
number of subspaces associated with distinct eigenvaluemj
of the quantum operatorJz . In contrast withNl , Nj is not
equal to the dimension of the corresponding Hilbert spa
though it is a measure of the system size sinceNj.2uJu. The
parameters and initial conditions shown in Fig. 11 are
same as in Fig. 10. The same fit procedure as above,
applied to the functionR5A/Nj

1/21B, yields a value forB
that is again consistent with zero (B50.000 3860.0016) and
a positive slope of order unity (A52.0060.04) in the pre-
dominantly chaotic regime~scatter of plus signs!. Thus the
relative standard deviation forJz also decreases as the in
verse square root of the quantum numbers and fits to
intercept that is consistent with zero. This implies that t
fluctuating quantum distributions approach the class
equilibrium, even for a few degree-of-freedom syste
which is described at all times by a pure state. In a cha
state of the mixed regime~scatter of crosses!, the fluctuations
are larger, and the same fit procedure as above gives~B5
20.01660.012,A56.460.3!, where the negative value fo
B lies within two standard deviations of zero and is pr
sumed to result from the statistical scatter of the data. A
plotted is the equationR5C/Nj

1/2, with C55.9760.06 de-
termined from a least-squares fit. The fits to both equati
are good, with reducedx2 values of order unity.

VIII. DISCUSSION

We have shown that, in classically chaotic regimes, i
tially localized quantum states relax to an equilibrium co
figuration that reflects the details of the classical phase sp
structure. We find a remarkable degree of corresponde
between the quantum and classical relaxation rates, eve
small quantum numbers. Moreover, contrary to results
tained for the low-order moments@12,13#, the degree of dif-
ference between the probability distributions is actua

t-

se

FIG. 11. Same as Fig. 10 but usingR@Jz#, as given by Eq.~32!.
Data sets in both types of chaotic regime are consistent with
scaling lawR.Nj

21/2, whereNj52(l 1s)11.
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QUANTUM-CLASSICAL CORRESPONDENCE FOR THE . . . PHYSICAL REVIEW E 64 026217
smaller for the chaotic states than the regular states.
The equilibrium quantum distributions exhibit small ra

idly oscillating fluctuations about the coarse-grained cla
cal equilibrium. As the measure of regular islands on
classical manifold approaches zero, the quantum and cla
cal equilibrium configurations approach their microcanoni
forms, and the quantum fluctuations about the classical e
librium approach a nonvanishing minimum. This minimu
arises because we consider total quantum states that are
whereas the microcanonical configuration is produced by
equal-weight mixture.

For the distributions associated with the subsystem
servableL , the scale-independent standard deviation of th
differences decreases asNl

21/2 whereNl52l 11.2uL u is the
dimension of the factor space, and becomes vanishin
small in the limit of large quantum numbers~i.e., large
spins!. These results suggest that correspondence with c
sical Liouville mechanics emerges in the classical limit
time scales much longer than the Ehrenfest time.

A great deal of recent work has emphasized that the
of purity resulting from interactions with a quantum enviro
ment removes characteristic quantum effects and impro
the degree of quantum-classical correspondence@15,2,16#.
While this is certainly the case for small quantum systems
has been further argued that thesedecoherenceeffects must
be taken into consideration to see the emergence of clas
properties from quantum mechanics, even in the limit
large quantum numbers, if the classical motion is chao
@5,18#.

Since our model is comprised of interacting subsyste
initially separable pure states become entangled dyna
tte

ev
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cally; the subsystem states~in each factor space! do not re-
main pure but become mixed. This entanglement process
an effect that is analogous to the process of decohere
Hence one might suspect that the emergent classical beh
that we have observed for the properties of the subsysteL
may be strictly the result of a ‘‘decoherence’’ effect arisin
from entanglement with the other subsystem. To address
possibility, we have considered also the quantum-class
differences that arise in the probability distributions for
total system observableJz . In this case the quantum obser
ables are projectors onto subspaces of the full Hilbert sp
rather than merely a factor space. The quantum state in
full Hilbert space is not subject to any entanglement or
coherence and remains pure throughout the unitary time e
lution. We have found that the scale-independent stand
deviations for these quantum-classical differences decre
as 1/ANj , whereNj52(s1 l )11 is a measure of the system
size,Nj.2uJu, whereN5(2s11)(2l 11) is the dimension
of the Hilbert space. The bin-wise quantum-classical diff
ences become increasingly difficult to observe, in the limit
large quantum numbers, even for system observables tha
isolated from the effects of decoherence. In this sense
process of decoherence is notnecessaryto produce quantum-
classical correspondence in the classical limit.
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