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Quantum-classical correspondence for the equilibrium distributions of two interacting spins
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We consider the quantum and classical Liouville dynamics of a nonintegrable model of two coupled spins.
Initially localized quantum states spread exponentially to the system size when the classical dynamics are
chaotic. The long-time behavior of the quantum probability distributions and, in particular, the parameter-
dependent rates of relaxation to the equilibrium state are surprisingly well approximated by the classical
Liouville mechanics even for small quantum numbers. As the accessible classical phase space becomes pre-
dominantly chaotic, the classical and quantum probability equilibrium configurations approach the microca-
nonical distribution, although the quantum equilibrium distributions exhibit characteristic “minimum” fluctua-
tions away from the microcanonical state. The magnitudes of the quantum-classical differences arising from
the equilibrium quantum fluctuations are studied for both pure and n{itaamically entangledquantum
states. In both cases the standard deviation of these fluctuations decredse® 4% where 7 is a measure of
the system size. In conclusion, under a variety of conditions the differences between quantum and classical
Liouville mechanics are shown to become vanishingly small in the classical |ifiit-( ) of a nondissipa-
tive model endowed with only a few degrees of freedom.
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[. INTRODUCTION significantly from the classical state although the means and
variancedfor some simple observableare nearly the same

The study of chaos in quantum dynamics has led to diffor the quantum and classical states. Moreover, much of the
fering views on the conditions required for demonstratingprevious work was concerned with correspondence at early
guantum-classical correspondente?]. Moreover, the crite- times, or more precisely, in the Ehrenfest regime when the
ria by which this correspondence should be measured hawstates are narrow compared to system dimendib2dl 3.
also been a subject of some controver3y5]. While much Another approach is to identify quantum-classical differ-
of the earlier work on this topic is concerned with character-ences with differences between the Wigner quasidistribution
izing the degree of correspondence between quantum expeand the classical phase space deng2fly This approach is
tation values and classical dynamical variablés-8], the  objectionable because the Wigner quasidistribution may take
more recent approach is to focus on differences between then negative values and therefore may not be interpreted as a
properties of quantum states and associated classical phasgassically observable” phase space distribution. It is pos-
space densities evolved according to Liouville’s equationsible to consider instead smoothed quantum phase space dis-
[1,9-13. tributions, but in this case the residual quantum-classical dif-

Several authors have examined guantum-classical corrdéerences still do not have clear experimental significance.
spondence by considering the effects of interactions with a In this paper, we characterize the degree of quantum-
stochastic environmeiif4—-16, a process sometimes called classical correspondence by comparing quantum probability
decoherenceWhile this process may improve the degree ofdistributions for dynamical variables with the corresponding
guantum-classical correspondence for fixed quantum nunelassical marginal distributions for these dynamical vari-
bers, it has been further suggested that the limit of larg@bles. These are well-defined classical observables that de-
guantum numbers is inadequate for correspondence, and thatribe the distribution of outcomes upon measurement of the
decoherencenustbe taken into account to generate classicalgiven dynamical variable. We are interested in the differ-
appearances from quantum theory; this view has been arguesces that arise onfane scale and therefore characterize the
to apply even in the case of macroscopic bodies that argypical quantum-classical deviations that arise in bins of
described initially by well-localized states, provided their width 7.
classical motion is chaoti&,17,18. In this paper we exam- The dynamics are generated by a model of interacting
ine how the degree of correspondence with Liouville dynamspins that we have studied previously in Rgf3]. The Hil-
ics scales specifically in the limit d&rge quantum numbers. bert space is finite dimensional so no artificial truncation of
This “classical limit” is distinct from a “thermodynamic the state is required. The quantum time evolution is unitary
limit,” that is, a limit involving manyquantum numbers. and the classical motion is volume preservisgmplectig.

The degree of Liouville correspondence has been charadn the case of classically chaotic motion, we follow initially
terized previously by studying the differences between thdocalized states until they have evolved well beyond the re-
means and variances of the dynamical varialjte®,11—- laxation time scale of the classical density. Throughout the
13,19. This involves a comparison of quantum expectationpaper we emphasize that tlgiantumsignatures of chaos
values and classical ensemble averages. However, these lotitat appear in the quantum distributions are the same as
order moments give only crude information about the differ-those that appear in the marginal classical distributions. In
ences between the quantum and classical states. Specificalpgrticular, the quantum relaxation rates can be accurately es-
the quantum state may exhibit coarse structure that differimated from the Liouville dynamics of an approximately
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matching initial phase space density. This purely classicaln the above we have sét=1 and introduced the total

approximation is surprisingly accurate even for small quanangular momentum vectar= S+ L.

tum numbers, but may be most useful for the theoretical The Hamiltonian(1l) possesses kinematic constants of the

description of mesoscopic systems since the purely classicatotion[S?>,H]=0 and[L? H]=0. Thus the total state vec-

calculations do not scale with the quantum numbers. tor [¢) can be represented in an invariant Hilbert spate
The quantum and classical probability distributions re-=H.®%H,, with dimension N=(2s+1)(2l+1), that is

main close even after the states have spread to the systespanned by the orthonormal vectors

size. Specifically, in mixed regimes, the quantum distribu-

tions exhibit an equilibrium shape that reflects the details of [s,],mg,m))=|s,mg)®|l,m) (2
the classical Kolmogorov-Arnold-MoseiKAM) surfaces.
When the classical manifold is predominantly chaotic, thewith mge{s,s—1,...,—s} andme{l,I-1,...,—1}.

quantum and classical states relax close to the microcanoni- It should be noted that the components of the total angular

cal state. However, in both of these chaotic regimes the equimomentum are not conservéd; ,H]+#0. Thez component

librium quantum distributions exhibit characteristic fluctua-is subject to the selection rulaJ,={=2,0} and conse-

tions away from the classical ones. We demonstrate that thguently the full Hilbert space can be decomposed into two

standard deviation of these quantum-classical differences b&variant subspaces.

comes vanishingly small in the classical limigf/#— o, The periodic sequence of interactions introduced byghe

where 7 is a characteristic system action. function produces a quantum mapping. The time evolution
This paper is organized as follows. In Sec. Il we describdor a single iteration, from just before a kick to just before

the quantum and classical models for our system. In Sec. Ilthe next, is produced by the unitary transformation

we describe the initial quantum states and corresponding

classical densities. In Sec. IV we give an overview of the |p(n+1))=F|y(n)), (3

dynamics of the probability distributions in the different clas-

sical regimes. In Sec. V we examine the quantum and clagvhereF is the single-step Floguet operator,

sical relaxation rates using the Shannon entropy. In Sec. VI

we give an overview of the time development of the small F=exd —ia(S,+L,)]exd —icS®L,]. 4

differences between the quantum and classical probabilitx_ . -

distributions. In Sec. VIl we show that the relative quantum- I h€ quantum dynamics are thus specified by two parameters,

classical differences decrease as an inverse power of the HRandc, and two quantum numbers and|.

bert space dimension. In Sec. VIII we provide a brief sum-

mary and explain how our results inform current discussions B. Classical map

of the necessary and sufficient conditions for the emergence For the Hamiltoniar(1) the corresponding classical equa-

of classical properties from quantum mechanics. tions of motion are obtained by interpreting the angular mo-
mentum components as dynamical variables satisfying,

Il. THE MODEL
' ' . .,S. = €:: f
We consider the quantum and classical dynamics gener- 1S, Sj} = €S«
ated by a nonintegrable model of two interacting spins, {L; L}= €L
iLjr= €ijkLlk,
H=a(S,+L,)+cSL, > a(t—n), @
< 13i 3} = €ijk I

where S=(S,,S,,S,) and L=(L,,Ly,L;). The first two
terms correspond to simple rotation of both spins aboutzthe
axis through an angla with range 2r radians. The sum over
coupling terms describes an infinite sequence’ éfinction
interactions at times=n for integern. Each interaction term
produces an impulsive rotation of each spin aboutxlaeis ~ ~ ~ ~ =0 ~ .
by an angle proportional to the compon?ant of the other S = Sycoda)—[S]cogyrLy) —) sin(yrL)]sin(a),
spin.

with {-,-} denoting the Poisson bracket. The periodic
function in the coupling term can be used to reduce the time
evolution to a stroboscopic mapping at tintesn, for inte-
gern,

§ " t=[§ cog yrLy) —§ sin(yrL})coga) + S} sin(a),
A. The quantum dynamics

To obtain the quantum dynamics we interpret the Carte- St =) cog yrL )+ §)sin(yrLy),
sian components of the spins as operators satisfying the usual (5)
angular momentum commutation relations, Lyt =L} coga)—[L]cog yS) — L] sin(yS))Isin(a),
[Si.S]=l€ixS, ~ ~ o -
o Ly "t =[Lycog yS)) —L]sin(yS})Jcoga) + Ly sin(a),
[Li,Lj]=l€ijcl,
[‘]i!‘]j]:ieijk‘]k- L2+l:|‘rz]coi’ysxn)+l-;s'n(’ysxn)
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Here = |_/||_| §=S/|S| and we have introduced the pa- D. Correspondence between quantum and classical models

rametersy=c|S andr=|L[/|S]. The mapping equatior(s) For a quantum system specified by the four numbers
describe the time evolution of E@l) from just before one  {a,c,s,} we determine the corresponding classical parameters
kick to just before the next. {a,y,r} by first defining the classical magnitudes in terms of

Since the magnitudes of both spins are conservedhe quantum magnitudes,
{S?2,H}={L?H}=0, the stroboscopic motion is actually

confined to the four-dimensional manifolP=S?X S?, |S|=Vs(s+1),
which corresponds to the surfaces of two spheres. This is
manifest when the mappin®) is expressed in terms of the [L|=VI(1+1), (9)

four canonical coordinatesx=(S,, ¢s,L,,¢|), where ¢g

=tan*1(Sy/SX) and ¢,=tan*1(Ly/Lx). We will refer to the where the gquantities on the left hand side are the lengths of
mapping(5) in canonical form using the shorthand notation the classical spins and those on the right are the quantum
x"TI=F(x"). It is also useful to introduce a complete set of numbers. If we set the Hamiltonian coefficiemtsind ¢ nu-

spherical  coordinates 6=(6s,s,6,,¢) where ¢, Mmerically equal for both models, then the remaining two di-
=cos (S,/|S|) and 6,=cos Y(L,/|L]). mensionless classical parameters are determined,

As in the quantum model, the components of total angular

momentum are not constants of the motigh,H}#0. On - I(1+1) ¥
the other hand, the quantum selection rilg,={+ 2,0} has s(s+1)) '
no classical analog.
The mapping5) on the reduced surfade enjoys a rather y=cys(s+1). (10
large parameter space. The dynamics are determined from
three independent dimensionless paramdterg, andr=1), We are interested in extrapolating the behavior of the

where y=c|§ is a dimensionless coupling strength andquantum dynamics in the limg—o andl—c. This is ac-
r=|L|/|S| corresponds to the ratio of the magnitudes of thecomplished by studying sequences of quantum models with
two spins. The dependence of the classical behavior on thesecreasings andl chosen so that andy are held fixed. Since

parameters is described in REL3]. s and| are restricted to integdior half-integey values, the
corresponding classicalwill actually vary slightly for each
C. The Liouville dynamics member of this sequencalthoughy can be matched exactly

. . . . by varying the quantum parameterslightly). In the limit
We are interested in comparing the quantum dynamicg”, ., 3| o this variation becomes increasingly small

generated by Eq(3) with the corresponding Liouville dy- sincer=yI(I+1)/s(s+1)—I/s. We have examined the ef-

Eﬁ)rs\lzﬁeotje?\s?tlasisgCzlngrlzfnrelzul:OPHeThaertitldrlngiffeevrzlﬁttilglne OL;‘_fect of the small variations in the value ofon the classical
yisg9 Y P U8 hehavior and found this variation to have negligible effect.

tion,
dpc(X,t) . INITIAL STATES
= {pcH}, ®) o
We consideinitial quantum states that are pure and sepa-
where H stands for the Hamiltonian (1) and rable,
X:(SZI¢S!LZ!¢I)' 0))= 0)® 0)). 11
The solution to Eq(6) can be expressed in the compact |0 =14(0))8[14(0)) @
form, The initial state of each subsystem is a directed angular mo-
mentum state,
pelt)= [ duy) S xtyDpcly0, N
’ P ‘ 10,¢)=RV(0,0)]j.i), (12)
with measure, wherej in this section refers to eithéror s. This is a local-
5 5 ized state, i.e., one of maximum polarization in the direction
du(y)=dS,dedL,de,, (8) (6, ¢), with expectation values of the spin components con-

fined to the surface of a two sphere,
and where the time-dependent functiots,y) € P are solu-

tions to the equations of motiofb) with initial conditions (6,0|3,|6,¢)=| coso,

y e P. This solution expresses the fact that Liouville’s equa- _

tion (6) describes the dynamics of a classical density of (60,|3x=13y]60,)=je™'?sine. (13
points evolving in phase space under the Hamiltonian flow.

We exploit this fact to numerically solve E@) by randomly The stateg12) are the SW2) coherent states, which, like

generating initial conditions consistent with an initial phasetheir counterparts in the Euclidean phase space, are mini-
space distributiorp.(x,0) and then time evolving each of mum uncertainty statg®0]; the normalized variance of the
these initial conditions using the equations of mot{éhn quadratic operator
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G+ 1) R (14 P that approximates that of a mixing system. In particular,
initially localized Liouville densities should relax close to-
is minimized for giverj and vanishes in the limjt—x. The ~ Wards the microcanonical measure at an exponential rate, on
coherent states directed along thaxis, |j, j) and|j,—j), average. In this section we demonstrate that these signatures
saturate the inequality of the Heisenberg uncertainty relatioR chaos are exhibited also by the quantum dynamics. Most
striking is the degree of similarity between the quantum and
) (3,)? classical behaviors even in regimes with classically mixed
(J(3y)= 2 (159  dynamics.

We are interested in the behavior of quantum probability
although this inequality is not saturated for coherent state§istributions that are associated with measurements of clas-
polarized in other directions. sical dynamical variables. The quantum probability distribu-

We would like to construct a classical Liouville density on tion associated with the classical observables given by
the two sphere with marginal distributions that match the
guantum probability distributions. But we have shown previ- P,_Z(m|)=<zﬁ(n)|R|ym||w(n)>=Tr[|I,m|>(l m [ pV(n)7,
ously that this is impossible for the $2) coherent states (17
[13]. Thus from the outset it is clear that any choice of initial
classical state will exhibit residual discrepancy in matchingyhere,
some of the initial quantum moments.
We have examined the correspondence properties of sev-
eral different classical distributions. These included the vec-
tor model distribution described in the Appendix[@8] and
the Gaussian distribution used by Fox and Elston in correiS a projection operator onto the eigenstates of and
spondence studies of the kicked tfp0]. We selected the

density pV(n)=Tr[y(n))(p(n)]] (19

A32=<0'¢|J2| 6,0)—(6,4|J|6,p)> 1 gimes that are predominantly chaotic, we expect behavior on

R|’m|=ls®||,m|><|,m|| (18)

2 sir?(?) is (ttle reduced state operator for the spirat time n, and
. _ . Tr'® denotes a trace over the factor spage. We have
pe(0,¢)sinfdodp=Cexy — o? singdode written out the explicit expressiofl7) to emphasize that the
(16)  probability of obtaining eactm, value is associated with a
. 5 P _ projector onto a subspace of thactor spacet, .
with C=[27o*{1—exp(-20~)}] ", instead of those previ- ~ For reasons related to this fa@thich we will make clear
ously considered because it is periodic under 2tation.  jn |ater sections we are also interested in examining the
The classical densit§16) has a maximum along thez axis,  probability distributions associated with components of the
corresponding to the coherent stgtg). An initial state di-  otq angular momentund=S+L. The probability of ob-

Eq. (16) by an angled, about they axis followed by rotation

through an anglep, about thez axis. The variance? is a

free parameter of the distribution. Althougt cannot be P, (m) =2 [(g(n)]s,l,mg,m—mg)|?, (20)
chosen so that all low order moments are satisfied, the choice ’ Ms

o 2=2|J|, where |J|?=j(j+1), produces a reasonable

compromise, as discussed[it3]. where [s,I,mg,m;—m,) is an element of the orthonormal
basis(2). The probabilityP; (m;) is associated with a pro-
IV. DYNAMICAL BEHAVIOR OF PROBABILITY jector onto a subspace of ttell Hilbert spaceH. The di-
DISTRIBUTIONS mension of each subspace is given by the number of pairs

. . . .. (mg,m;) that yield a given value ofn;=mg+m,;.
In the case of a mixing classical system, initial densities Ty, ‘classical probability distributions associated with dy-

with nonzero support are expected to spread in an incréagymical variables are obtained by partial integration over the
ingly uniform manner throughout the accessible phase spacg;cessiple phase space. In the casé gf the continuous
The termuniformis meant to apply specifically in a coarse- marginal distribution is given by

grained sense. For some simple maps, such as the baker’s
map, it is possible to show that this rate of relaxation to the
Fql,]lilibrium configuration occurs exponentially with time P(Lz):f f f dS,deddip(S,, bs,L,.d), (21)
21].

The spin map we consider, E¢p), is not mixing on the
accessible classical manifol®, but hasmixed dynamics: where for notational convenience we have suppressed refer-
depending on the system parameters, the sufacan gen- ence to the time dependence. The marginal probability dis-
erally be decomposed into regions of regular dynamics and a&ibution for the total spin componedj, is obtained by inte-
connected region of chaotic dynamids3]. In parameter re- gration subject to the constraig;+L,=J,,
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0.1 — 0.1 F —

X 8(S,+L,—J,). (22 0.08 1 008F ]

0.06 1 0.06 - 1

. o ) 0.04 . 0.04 e

These classical distributions are continuous, though theirg oo i 0.02 - i

guantum counterparts are intrinsically discrete. To construct o b e e

a meaningful quantum-classical comparison it is useful to ~ -130-100 -50 72 50 100 150 -150-100 -50 ngl 50 100 150
1

discretize the classical distributions by integrating the con-
tinuous probabilities over intervals of width=1 centered FIG. 1. Quantum and classical probability distributions Egr
on the quantum eigenvalues. In the case of the componeniith |=154 in chaotic zone of mixed regimg=1.215,r=1.1,
L., the quantum probabilit®, (m;) is then associated with a=5). The dots are visible because they are shifted to the right by

the classical probability of findingL, in the interval half of their width. The figure on the left is the initial state

[m,— 1/2m,+ 1/2]. This is given by (n=0) and that on the right is at time step=6.
my+ 172 A. Mixed regime chaos
c —
PL(m)= fm|—1/2 P(L2). 23 We consider first a classical parameter regirtre

=1.215,r=1.1, anda=5) for which the kinematically ac-
cessible phase spagegis highly mixed. The chaotic region
appears to be connectédll chaotic initial conditions have
the same largest Lyapunov exponent=0.04) and covers
about half of the kinematic surface. A projection of only the
P (m) = fmj+1/2P(J ) (24) chaotic initial conditions onto the plane spanned$yand
S o L, reveals large regular islands surrounding the stable paral-
lel fixed points ¢S,,*+L,), with chaotic regions spreading

In the following discussion of the numerical results we out from the unstable antiparallel fixed points §,,¥L,).

will emphasize that, for chaotic states, the steady-state sha;‘)oéTc'im"ar projection of the regular initial conditions TQ‘hOWS
of the quantum and classical distributions should be comPOINnts not only cIustereQabgut the parallel fixed points but
pared with the corresponding set derived from the microca@lso spread along the lirg,=L,.

nonical state. Our model is nonautonomous, but the spin We now consider the time evolution of quantum and clas-
magnitudes are conserved. The appropridssical micro- sical states concentrated in the chaotic zone near one of the
canonical measure is a constant on the accessible manifoWfistable antiparallel fixed points, with initial centroids di-
P=S?x S2. This follows from the usual equilibrium hypoth- rected alongé(0)=(20° ,40°,160°,130°). The quantum dy-
esis that all accessible microstates are equiprobable, wheramics are calculated using quantum numime+sl40 and
equiprobability is defined with respect to the invariant mead = 154. As shown in Fig. 1, at early times both the quantum
sure(8). This microcanonical density projected onto the  distribution PLZ(m,) (solid line) and the corresponding clas-

axis produces the discrete, flat distribution, sical distributionP{ (my) (dots remain well localized. Their
initial differences are not distinguishable on the scale of the

figures. (The dots are shifted to the right by half of their
width.) By time stepn=20 both quantum and classical dis-

However, projected along,, the microcanonical distribu- tributions have broadened to the system size and begin to

Similarly, in the case of],, we compare each quantum
sz(mj) with the discrete classicaprobability

i

PI(my)=(21+1) "%, 25

tion is not flat, but has a tent shape, exhibit noticeable differences. As shown in Fig. 2, around
n=100 the distributions have begun to settle close to an
| +s+1—|m| equilibrium shape. In Fig. 3 the successive time staps
me ay— =~ — b I=]—
PLM)= Gern@ry o ImiEs

0.02

0.02

0.015 0.015

for |mj|<I-s. (26)

T 21+1 0.01 0.01

. . - .. . 0.005
In quantum mechanics, the equiprobability hypothesis im-"%%

plies that the appropriate microcanonical state is an equal o
weight mixture. This microcanonical state, sometimes called

a random state, is proportional to the identity in the full
Hilbert space="Hs®H, . It produces the same projected  F|G. 2. Same as Fig. 1 but for time steps 99 on the left and
microcanonical distributions, i.e., E¢25) for L, and Eq. n=100 on the right. Both quantum and classical distributions have
(26) for J,, as the classical microcanonical state. reached the system dimension and are relaxing towards equilibrium.

0 1 | 1 ~ ‘I L L
-150-100 -50 0 50 100 150 -150-100 -50 0 50 100 150
Ty my
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0.02 0.02 0.02 0.005
T T }fg,%(;?a)l II T T ]EQZE%!;} Il
0.015 F LA 4 o015 0.015 - L.\ 4 0004
0.003
0.01 - 0.01 0.01 |- -
0.002
0.005 - 0.005 0.005 - — 0.001
1 Ao s A Ay b g AN .
0 1 ! I. 1 L 1] 0 L L L | 1 1 0 L L 1 1 1 I 1 0 | | i 1 1
-150-100 -50 0 50 100 150 -150-100 -50 0 50 100 150 -150-100 -50 0 50 100 150 -300-200-100 0 100 200 300
my my my m;
FIG. 3. Same as Fig. 1 but for=199 on the left anch=200 on FIG. 5. The equilibrium shapes @fLZ(m|) and PJZ(mj) at time
the right. The quantum distribution is fluctuating about a classicaktep n=50 with | =154 for a state launched in the global chaos
steady state. regime(y=2.835,r =1.1,a=>5). The quantum distributions exhibit

small rapidly oscillating fluctuations about the projected microca-

=199 andn=200 show that, although both the quantum arMnonic::u_l dist_ribut_ions. The classi(_:al distributions are not visible since
classical distributions have relaxed very close to the sami'€ POints lie within the fluctuating quantum data.
equilibrium distribution, the quantum distribution exhibits
rapidly oscillating fluctuations about the classical steady[13]: the presence of KAM surfaces arising due to the stabil-
state. ity of the parallel fixed points prevents the chaotic classical
Both the quantum and classical equilibrium distributionsspins from aligning in parallel along tteaxis. Most remark-
(projected alongd.,) show significant deviation from the mi- ably, we find that the steady-state quantum distributions ac-
crocanonical distributiori25). This is also true of the distri- curately reproduce this parameter-dependent structure of the
bution projected along,, which has a different nonuniform mixed classical phase space even for much smaller quantum
equilibrium distribution than that observed when projectingnumbers. We examine how the accuracy of this correspon-
ontolL, (see the left box of Fig. 4 Uniform marginal distri-  dence scales with the quantum numbers in Sec. VII.
butions would be expected if the classical mapping was mix-
ing, in which case arbitrary initial densitiéwith nonvanish- B. Regime of global chaos
ing measurgwould relax to the microcanonical distribution. . .
Since the accessible kinematic surface has large KAM sur- T e hold a=5 andr=1.1 fixed and increase the cou-
faces in this parameter regime, the coarse-grasiagsical  PNg strength to the value/=2.835, then all four of the
equilibrium distributions are not expected to be flat. An un-fixed points mentioned already become unstabg. Under
expected feature of the results is the observation that thi1eS€ conditions less than 0.1% of the surfatis covered
shape of the equilibriumuantumdistributions so accurately With regular islands; the remainder of the surface produces a
reflects the details of the KAM structure in the classicalCONnected chaotic zone with largest Lyapunov expongnt
phase space. This feature is most striking in the case of thg 0-42- We will sometimes refer to this parameter regime as
distributions projected alond, (see the right box in Fig.)4  ON€ ofglobal cha_0$|nce the k_mematlcally accessible phase
The steady-state quantum and classical probability distribuSPace iS predominantly chaotic.

tions P, (m) and P¢ (m) are both sharply peaked about 1 h€ dynamics of the classical and quantum distributions
lons Py,(m;) JZ( 2 Sharply p . are much simpler in this regime. We find that initially local-

m;=0. This equilibrium shape is much more sharply peaked,¢q gistributions, launched from arbitrary initial conditions,
than thmec tent shape of the projectitrocanonicaldistribu-  rgja to the microcanonical distribution on a very short time
tion, Py(my), given by Eq.(26) and also plotted in the right  scale. To demonstrate this, we consider the dynamics of an

box in Fig. 4. The important point is that the additional lo- initial quantum state witts=140 andl =154, and a corre-
calization of thequantumdistribution can be understood sponding classical density, launched fromd(0)

from a standard fixed-point analysis of tleéassical map =(20°,40°,160°,130°). Though the initial distributions are
the same as in the mixed regime, by time step6 the

002 Em’ T 0.025 — oA guantum and classical distributions have already spread to
0015 - Pﬁ mt% ------ i 0.02 - PZE%% ~~~~~~ — the system size and begin to exhibit noticeable differences.
0.015 L i By time stepn=12 both distributions have relaxed very
0.01 |- : close to the microcanonical distributions. We plot the equi-
Al ] librium quantum and classical projected distributions
e 0.005 |- l’ - PLZ(mj) and PJZ(mj) in Fig. 5 for time stepn=50. The
T S — 0 N projectedclassical distributions are early indistinguishable
-150-100 -50 0 50 100 150 -300-200-100 0 100 200 300

from the microcanonical forms!?[":(mj) and PE“XC(mJ-), and

the quantumdistributions again exhibit small fluctuations
FIG. 4. Same as in the previous figure, but Rr (m) on the  ahout the classical distributions. We have found that these

left and P, (m;) on the right, at time step=200. BothP, (m;)  equilibrium quantum-classical differences asymptote to a

and Pﬁz(mj) are localized relative to the projected microcanonicalnonvanishing minimum when the measure of KAM surfaces

distribution P7'(m;). becomes negligible. These minimum quantum fluctuations

my my
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reflect characteristic deviations from the microcanonical state6 ' ' * ' ' ' ‘ ' !
that arise because the equilibrium quantum state is pure
whereas the microcanonical state corresponds to a randors
mixture.

4

V. RATES OF RELAXATION TO EQUILIBRIUM 3

In order to characterize the time scale of relaxation to
equilibrium it is convenient to study the time dependence of
a scalar measure that is sensitive to deviations from the equi;
librium state. A conventional indicator of this rate of ap-

HH H H _ H O i 1 L I. L I L L i
proach to equilibrium is the coarse-grained entropy, 0 s 10 15 a0 95 30 3 a0 a0
Kick Number
H:—E PiInP;. (27 FIG. 6. Comparison of the quantum and classical entropies
I

H[J,]= —EijJz(mj)In P;(m) for s=140 andl=154 in (a) re-
o ) gime of global chaos ¥=2.835); (b) chaotic zone of the mixed
Here the{P;} stand for the quantum probabilities associatedregime (y=1.215); (c) regular zone of the mixed regime
with projectors onto some basis of microstates., the pro-  (,,=1.215).
jected distributions discussed in the previous segtidime
sum(27) is a standard measure of the information contained20). The corresponding classical entropy[J,] is calcu-
in a probability distribution and is sometimes called thelated using the discrete classical probabiliti2d). In Fig. 6
Shannon entropy. we compare the time development of the quantum and clas-
The Shannon entropy has a number of useful propertiessical entropies using quantum numbers140 andl = 154.
First, unlike the von Neumann entropyTr[p In p], the Sh-  For these quantum numbers, the microcanoniceal, maxi-

annon entropy is basis dependent. It reduces to the von Newum) value of the entropy i51™7J,]=6.2. In cas€c), cor-
mann entropy if the “chosen” basis diagonalizes the state . : L
operator. However, this basis, or, more precisely, the set Orfesp?ncim% t(: a regular zone of the mixed regipeg0)
: . - =(5°,5°,6°,5°), y=1.215, we actually see the greatest
projectors onto thétime-dependentspectral decomposition ( .
of the state operator, does not necessarily correspond to a oqnt of difference be_tween the lqgantuhﬂlqKJz_]) e.md.
of classically meaningful observables. Our main interest is t& as_smgl HC[‘]ZD. er_1t_r(_3p|es.Hq exhibits a quaS|per|0(_d|c
examine correspondence at the level of classical dynamicfas.c'"at'on about its initial value whereas fbl, these oscil-
variables, so we consider probability distributions associate tions eventually.dla.mpen. For smaller quantum numbers,
with projectors onto the eigenstates of classically We”_gnd thus broader |n|t_|al stateld d_ampens much more rap-
defined operators. The classical counterparts to these prolﬁj-Iy althoughH, continues to exhibit a pronounced Quasip-
ability distributions are associated with some fixed partion-eriodic behavior. In casdb), with initial centroid 6(0)
ing of the phase space into cells of widthalong the axes of =(20°,40°,160°,130°) set in a chaotic region of the equally
the associated dynamical variable. mixed regime, bottH, and H. oscillate about an initially
Second, whereas the von Neuman entropy of the totahcreasing average before relaxing towards a constant value
system is constant in time ([JsIn p]=0 sincep=|¢)(4|),  that lies well below the microcanonical maximui"{J,]
the basis-dependent Shannon entropy may have time depen6.2. This saturation away from the maximum is expected
dence even if the quantum state is pure. Thus(E@. may in the classical model since a large fraction of the kinematic
be applied to examine the rate of relaxation of eith@reor  surface is covered with regular islands and remains inacces-
mixedquantum states. It is in this sense that we use the terrsible. In case(a), corresponding to the regime of global
relaxation although the time evolution is unitary in the chaos (y=2.835) and with the same initial state @s, the
guantum model(and volume preserving in the classical entropies are nearly identical. Both grow much more quickly
mode). than in the mixed regime case, roughly linearly, until satu-
Given some fixed partioning of the phase space, if a clasrating very near the maximum value.
sical state remains evenly spread through the phase spaceThe quantum entropy is very well approximated by its
cells it occupies, and spreads through the phase space expiassical counterpart also for smaller quantum numbers. In
nentially with time, then an entropy like Eq27) should Fig. 7 we display the growth rates of the quantum and clas-
grow linearly with time. In this section we show that this sical entropies of the probability distributions associated with
argument holds approximately also for quantum stateshe observablé., for three sizes of quantum systei=11,
launched from a classically chaotic region of phase spacé=22,1=220) using the same parameters and initial condi-
The actual rate of relaxation of the quantum states is accition as for data seta) in Fig. 6. In each case the quantum
rately predicted by the classical entropy even for small quanentropy is essentially identical to the corresponding classical
tum numbers. entropy. The initial rate of growth is similar in each case,
We demonstrate this behavior by first considering theroughly linear, and of order the Lyapunov exponen,
quantum entropy [ J,] of the probabilities associated with =0.45.
the eigenvaluesy; of J,, i.e., the probabilities defined in Eq. These results extend previous work demonstrating that the
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FIG. 7. Comparison of the quantum and classical subsystem F|G. 8. Time dependence of the standard deviatigh,] of
entropies H[L,]=—2%p P_ (m)In P (m) for increasing system  quantum-classical differencég9) for states launched from a regu-
sizes in the global chaos regime of Fig. 6. lar zone(dotted ling of the mixed regime y=1.215), from a cha-

otic zone of the same mixed reginfmiddle solid ling, and from
widths of quantum states grow exponentially with time, onthe regime of global chad$ower solid line,y=2.839. The initial
average, until saturation at the system si##,12,13. discrepancy is relatively large, but quickly decreases, and then in-
Modulo the small quantum fluctuations, for both quantumcreases until reaching an asymptotic equilibrium value. This occurs
and classical models we find that the subsequent relaxatioRore slowly for the mixed regime case, for which the asymptotic
to an equilibrium configuration occurs on the time scale ~ Value is also larger. In all cases=140 andl =154.

tre’\’tsa O )\_1, 28 1 l "
~toact OO\ 1) (28 2 [P (m)—PE(m)]?

olba1=| vy &
wheretg,=\,,* In| estimates the time it takes the initial co- (29
herent state to reach the system dimension. The expagent o _ _ )
is the exponent governing the growth rate of the state widtd Nis standard deviation estimates typical quantum-classical
[13]. The last ternO(\[ %) approximates the additional time Qn‘ferences on the scale én‘alo_ng thel, axis. Each interval
required for the state to become more or less uniformlyS centered on a quantum eigenvalue. TFPf_eZ(m|) corre-
spread over the accessible phase space. In predominangipond to a measurement, or coarse graining, of the classical
chaotic regimes we have found that,=\,, though in  density on an extremely fine scale.
mixed regimes\,, is generally a few times larger than the In Fig. 8 we examine the time dependenceodt.,] for
largest Lyapunov exponent. the same three classical sets of parameters and initial condi-
tions displayed in Fig. 6. The initial value @f[L,] is gen-
erally not zero since it is not possible to match all the mar-
ginal distributions exactly in the case of the @WJcoherent
states[13]. The actual magnitude of the initial discrepancy
Before examining the scaling of quantum-classical differ-depends on the angle between the axis of measurement, e.g.,
ences with increasing quantum numbers, it is useful to detel-,, and the direction of polarization of the initial state. For
mine first their time-domain characteristics under the differ-both chaotic states the differences initially decrease from
ent types of classical behavior. Previous work has shown thdheir angle-dependent value and then increase until saturation
guantum-classical differences for low-order momentsat a steady-state value. This steady-state value is reached
though initially small, grow exponentially with time when much later in the mixed regim@pper solid ling, than in the
the classical motion is chaotid2,19 until the states ap- global chaos regimédower solid ling. It occurs on the time
proach the system siZé3]. On this saturation time scale scalet,, on which the underlying distributions have reached
those quantum-classical differences reach their maximurtheir steady-state configuratioodulo the quantum fluc-
magnitude, but surprisingly this maximum was smal(#.). tuations.
More specifically, it did not scale with the quantum numbers. As shown in Fig. 8, the quantum-classical differences are
Of course, two distributions can be altogether different everactually largest for the regular staotted ling of the mixed
when the differences between their means and variances aregime (y=1.215) at both early and late timéselative to
quite small, and therefore it is useful to examine the differ-the relaxation time scaleThe steady-state magnitude of the
ences between the quantum and classical states in a madéferences for the global chaos regime= 2.835) is signifi-
sensitive way. cantly smaller than the typical magnitude for the mixed re-
In this section we examine the time dependence of bingime. However, for larger values of the classical perturbation
wise deviations between the quantum and classical probabistrengthy, this average steady-state magnitude does not de-
ity distributions. For the observable, this indicator takes crease furthefwith the quantum numbers held fixelout has
the form reached a nonvanishing minimum. The magnitude of the

VI. TIME DEPENDENCE OF QUANTUM-CLASSICAL
DIFFERENCES
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107! ] T . T standard deviations of the quantum fluctuations that account
for the equilibrium quantum-classical differences approach a
w2 . SoL i A nonvanishing minimum as the classical dynamics approach
e T T T e T ergodicity onP. These equilibrium differences cannot vanish
10-3 (for fixed quantum numberdecause the total quantum state
ol ) remains pure under the unitary dynamics, whereas the micro-
10-4 canonical equilibrium corresponds to an equal-weight mix-
ture.
10-°
VIl. CORRESPONDENCE IN THE CLASSICAL LIMIT
—6 1 1 1 1
0 20 40 60 80 100 We now turn to an examination of the classical limit,
Kick Number Jlh—, whereJ is characteristic system action. Since the

FIG. 9. Same as Fig. 8 but for the standard deviation ofduantum-classical differences grow to their Ia_lrgest values
quantum-classical differences of the total angular momentfgy] ~ ©Nce the states have spread to the system size and subse-
given by Eq.(30). quently fluctuate about this magnitude, we will examine the
scaling of the differences in this late time domain, that is,
when the states have relaxed close to their equilibrium con-

: . . igurations. Moreover, these scaling results will then comple-
be compared with a typical magnitude of the quantum an ent previous work that has focused on correspondence at

classical distributionsP, (m;)=~3x10 °. In the following early timeg[13], in the Ehrenfest regime when the states are
section we examine how these fluctuations scale with innarrow relative to the system dimensions.
creasing quantum numbers. We wish to determine if the standard deviation of the
Above we have considered quantum-classical differencegyantum-classical differencésefined in the previous sec-
for observablegprojectors onto subspageassociated with  tjon) decreases in magnitude with increasing quantum num-
the factor spacé, . In this factor space the state is |n|t|aIIy bers. When Comparing models with increasing guantum
pure but becomes mixed as a result of dynamical interactiongumbers, we hold the width of each probability bin fixed
with the other Subsystem. It is interesting to check if theﬁ: 1) Since the number of bins will increase with the quan-
dynamical behaviors of the differences are an artifact okum number, it follows that the height of the probability dis-
this dynamical mixing. Therefore we consider also bin-tripution in a given bin will also decrease. Consequently, we
wise quantum-classical differences for an observableonstruct a scale-independent, or relative, measure of the
(J;=S,+L,) that acts nontrivially on the full Hilbert space pinwise quantum fluctuations by taking the ratio of the stan-

H=Hs®H,. The quantum state in the full Hilbert space dard deviation to the average value of the probability distri-
remains pure throughout the time evolution. We construct thgyution. For the observable, this takes the form,

same standard deviation of the bin-wise differences between
the quantum and classical probability distributions as above,

minimum steady-state quctuationQLZ:2><10*4, should

DIL,
R[Lz(n)]:&:NIU[Lz(n)]v (32)

1 1/2 P|_
alJ,]= m; [PJZ(mj)_PgZ(mj)]z) : z
i _
B0 where the average valg_=1/(2l+1)=1/N,. If this rela-
tive measure approaches zero in the classical limit then the
quantum probability distribution converges to the corre-
rJsponding classical one in that limit.
In Fig. 10 we consider typical equilibrium values of
®IL,(n)] plotted against 3/N,. We study the scaling using
gl, because it is equal to the dimension of the factor sgéce
nd it is also proportional to the subsystem sige=2|L|.
We first consider a state launched in the global chaos regime

wherem; e {l+s,I+s—1,... —(I+s)}. In Fig. 9 we com-
pareo[J,] in the same three classical regimes examined i
Fig. 8. Once again the regular statitted ling exhibits the
largest quantum-classical differences, and the differences f
both chaotic stateémiddle and lower solid linegrow to a
steady-state value on the time scale at which the underlyin
distributions relax to their equilibrium configurations. As
above, the average value of the differences for2.835 -
(lower solid lin@ correspond to a nonvanishing minimum, (y=2.835, r=1.1, with initial condition 6(0)
that is, the average value does not noticeably decrease fet(45°,70°,135°,70°). The scatter of plus signs for ebigh
larger values ofy. The minimum quantum fluctuations are =2l+1 value corresponds to time stepssuch that 4&n
again small when compared with the average height of thes50. These time-step values are chosen because they occur
probability distribution[2(s+1)+1] 1=2x10"3. well after the relaxation timé=6. In this regime the data

For y=2.835, the measure of regular islands is alreadyexhibits very little scatter. A least-squares fit to the cuRe
very close to zero and the classical system is nearly ergodie A/\/N,+ B yields a value for the intercef that is consis-
on P. Similarly, the quantum state is no longer constrainedent with zero 8=0.001+0.001) and a slope of order unity
by any invariant classical structures but spreadisiost (A=1.032+0.02). An intercept consistent with zero implies
evenly about the accessible Hilbert space. We find that théhat quantum-classical differences vanish in the classical
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FIG. 10. Scaling of relative quantum-classical differen(&h FIG. 11. Same as Fig. 10 but usiR§J,], as given by Eq(32).

in the equilibrium time domain Versus increasing system size. Scatl:)ata sets in both types of chaotic regime are consistent with the
ter of crosses corresponds to time steps<18%200, for a state scaling IaWR:Nfl'z, whereN;=2(1 +s)+ 1.

launched in the chaotic zone of the mixed reginye=(1.215). Scat-
ter of plus signs corresponds to time stepss#k50, for a state

launched in the global chaos regime. Data sets in both of these _D[J(m]
regimes are consistent with the scaling l&w=N;, Y2, where RIJ(n)]=——= =NjolJ(m], (32)
N| = 2| +1. I:)‘]Z

D — —-1_pn— 1

limit, i.e., P, (m)—P{ (m)) asl—o. This result is espe- vvhere P,Jz_,[z(,SH)H] =N s the average vglue of

. 3 .o . . either distribution, versus the dimensidhy. HereN; is the
cially remarkable since we have considered the differences,mper of subspaces associated with distinct eigenvatyes
that arise given classical measurements thaF resolve the 0t the quantum operatal,. In contrast withN;, N; is not
servableL, with the rather extraordinary precision =1.  gqual to the dimension of the corresponding Hilbert space,

We next consider a state launched from the chaotic zong,gygh it is a measure of the system size siNce-2|J|. The

of the mixed regime (y=1.215, r=1.1) with 6(0)  parameters and initial conditions shown in Fig. 11 are the
=(20°,40°,160°,130°). The scatter of crosses in Fig. 10 corsame as in Fig. 10. The same fit procedure as above, but
responds to time steps 18h=<200, again chosen well after gppjied to the functiorR:A/le/2+ B, yields a value foB
the relaxation timet for the range of quantum numbers hat js again consistent with zerB £0.000 38-0.0016) and
considered. The scatter of quantum-classical differences at positive slope of order unityA=2.00+0.04) in the pre-
eachN, value is much more significant in this regime in gominantly chaotic regiméscatter of plus signs Thus the
which the equilibrium distributions reflect a much more yg|ative standard deviation fat, also decreases as the in-
complex phase space structure. However, the relative diffeizerse square root of the quantum numbers and fits to an
ences exhibit, on average, a similar dependence on the quaprercept that is consistent with zero. This implies that the
tum numbers as in the predominantly chaopc regime. In thigjycryating quantum  distributions approach the classical
regime a least-squares fit to the cuRe: A/N"*+ B yields & equilibrium, even for a few degree-of-freedom system,
slope of order unity A=3.39£0.15) but a negative value which is described at all times by a pure state. In a chaotic
for the intercept B=—0.017=0.009) within two standard state of the mixed regimecatter of crossesthe fluctuations
deviations of zero. A negative intercept is not phySica”yare |arger, and the same fit procedure as above QB%
meaningful(sinceR is a positive definite quantilyand we  —0.016+0.012,A=6.4+0.3), where the negative value for
assume it arises as a consequence of the statistical scattergnjies within two standard deviations of zero and is pre-

the data. Also plotted is the curi@=C/N}"?, with slope  sumed to result from the statistical scatter of the data. Also
C=3.09+0.04 also determined from a least-squares fit. Bottp|otted is the equatioR=C/Nj1’2, with C=5.97+0.06 de-
fits are good, with reduceg® values of order unity. termined from a least-squares fit. The fits to both equations
As we noted in the last section, the subsystem states dgre good, with reduceg? values of order unity.
not remain pure, because of dynamically induced entangle-
ment between the subsystems. Since the subsysten{Edate
in the factor spacé, is not pure, but highly mixed in the
equilibrium time domain, it is possible that the scaling with  We have shown that, in classically chaotic regimes, ini-
N, that we observe is related to the purity loss from thistially localized quantum states relax to an equilibrium con-
entanglement. Consequently, it is useful to examine the scafiguration that reflects the details of the classical phase space
ing of the quantum-classical differences for the total shin  structure. We find a remarkable degree of correspondence
The operatod, acts nontrivially in the full Hilbert space!. between the quantum and classical relaxation rates, even for
In this Hilbert space the system is described by a pure statemall quantum numbers. Moreover, contrary to results ob-
vector at all times. In Fig. 11 we consider the scaling of thetained for the low-order momenfd2,13, the degree of dif-
ratio ference between the probability distributions is actually

VIIl. DISCUSSION
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smaller for the chaotic states than the regular states. cally; the subsystem statém each factor spagelo not re-

The equilibrium gquantum distributions exhibit small rap- main pure but become mixed. This entanglement process has
idly oscillating fluctuations about the coarse-grained classian effect that is analogous to the process of decoherence.
cal equilibrium. As the measure of regular islands on theHence one might suspect that the emergent classical behavior
classical manifold approaches zero, the quantum and clasghat we have observed for the properties of the subsystem
cal equilibrium configurations approach their microcanonicafmay be strictly the result of a “decoherence” effect arising
forms, and the quantum fluctuations about the classical equffom entanglement with the other subsystem. To address this
librium approach a nonvanishing minimum. This minimum POSsibility, we have considered also the quantum-classical
arises because we consider total quantum states that are puffdferences that arise in the probability distributions for a

whereas the microcanonical configuration is produced by aFPSIal system c_)bstervabu%. In lghls case t][lthl;alrlltn%ot;serv-
equal-weight mixture. ables are projectors onto subspaces of the full Hilbert space,

For the distributions associated with the subsystem Ob[ather than merely a factor space. The quantum state in this

servablel, the scale-independent standard deviation of thesgJII Hilbert space is not subject to any entanglgamen_t or de-
differences decreases N5 2 whereN, = 2| + 1=2|L|is the coherence and remains pure throughout the unitary time evo-
dimension of the factof space arlld becomes vanishingIIUtion' We have found that the scale-independent standard

; o : deviations for these quantum-classical differences decrease
small in the limit of large quantum numbefse., large

sping. These results suggest that correspondence with clag® AN, whereN;=2(s+1) +1 is a measure of the system

sical Liouville mechanics emerges in the classical limit forS'Ze’NiA_v.2|‘]|' whereN=(25_+ 1?(2| +1) is the dmenspn
time scales much longer than the Ehrenfest time. of the Hilbert space. The bin-wise quantum-classical differ-

A great deal of recent work has emphasized that the los nces become increasingly difficult to observe, in the limit of
of purity resulting from interactions with a quantum environ- arge quantum numbers, even for system observables that are

ment removes characteristic quantum effects and improve'§0Iated from the effects of decoherence. In this sense the

the degree of quantum-classical corresponddriég2,18. process of decoherence is_mm{cessaryq produpe quantum-

While this is certainly the case for small quantum systems, iFIaSS'CaI correspondence in the classical limit.

has been further argued that theloherenceffects must

be taken into consideration to see the emergence of classical

properties from quantum mechanics, even in the limit of We thank the Natural Sciences and Engineering Research

large quantum numbers, if the classical motion is chaoticCouncil of Canada for financial support. J.E. would like to

[5,18]. thank K. Kallio for stimulating discussions and the Center
Since our model is comprised of interacting subsystemsior Experimental and Constructive Mathematics at Simon

initially separable pure states become entangled dynamkraser University for access to computational resources.
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